

Energy transition in miniature:

Combining catalysis and reaction engineering at a particle level

Olaf Hinrichsen

Catalysis Research Center Technische Universität München

Welcome to TUM@Garching!

Power-to-Gas (PtG) Concept

CO methanation CO_2 methanation

 $CO + 3 H_2 \rightleftharpoons CH_4 + H_2O$ $CO_2 + 4 H_2 \rightleftharpoons CH_4 + 2 H_2O$

 $\Delta_R H^\circ$ = -206 kJ mol⁻¹, $\Delta_R G^\circ$ = -142 kJ mol⁻¹ $\Delta_R H^\circ$ = -165 kJ mol⁻¹, $\Delta_R G^\circ$ = -114 kJ mol⁻¹ Chair I of Technical Chemistry Department of Chemistry Technical University of Munich

F. Koschany, D. Schlereth, O. Hinrichsen, Appl. Catal. B 2016, 181, 504–516.

Thermodynamics of the CO₂ Methanation Reaction

J. Xu, G.F. Froment, *AIChE J.* **1989**, *35*, 88–96. D. Schlereth, O. Hinrichsen, *Chem. Eng. Res. Des.* **2014**, *92*, 702–712.

Catalyst Synthesis: Ni-Al mixed metal oxide catalysts

Contactless Temperature Measurements

Spatial resolved temperature measurements:

Observation of temperature profile and hotspot formation

C. Schüler et al., Journal of CO₂ Utilization, **2018**, 25, 158–169.

Kinetic Measurements – Long-term Experiments

F. Koschany, D. Schlereth, O. Hinrichsen, Appl. Catal. B 2016, 181, 504–516.

Kinetic Measurements – Variation of Reaction Conditions

F. Koschany, D. Schlereth, O. Hinrichsen, Appl. Catal. B 2016, 181, 504–516.

"rapid aging test": simulation by aging treatment (500 °C, 32 h, 8 bar)

T. Burger, F. Koschany, O. Thomys, K. Köhler, O. Hinrichsen Appl. Catal. A, 2018, 558, 44-55.

Catalyst Activity vs. Stability – Influence of Metal Doping

- Highly active and thermostable catalysts can be synthesized
- Synthesis of multimetal-promoted catalysts
 - effects on catalyst activity and stability
 - interactions between promoters
 - alternative synthesis procedures

T. Burger, F. Koschany, O. Thomys, K. Köhler, O. Hinrichsen Appl. Catal. A, 2018, 558, 44-55.

Different Synthesis Strategies for bi-promoted Ni-based Catalysts

Doping of co-precipitated NiAl catalyst via...

Dopant Effect of Mn on Co-Precipitated Ni-AI in CO₂ Methanation

Technique	Effect
H ₂ -TPR	reduction signals of Mn ⁴⁺ to Mn ²⁺
XRD	interaction of Mn ²⁺ with mixed metal oxide
IR spectroscopy (CO ₂), CO_2 chemisorption	increase of basic site density
H ₂ -TPD	identification of Ni sites
CO ₂ -TPD	increase of (esp. medium) basic site density
H ₂ chemisorption	enhancement of Ni particle dispersion

Increase of catalytic activity

T. Burger, F. Koschany, O. Thomys, K. Köhler, O. Hinrichsen, Appl. Catal. A 2018, 558, 44–54.

Dopant Effect of Fe on Co-Precipitated Ni-AI in CO₂ Methanation

Doping via Co-Precipitation: Fe

Technique	Effect		Ir
H ₂ -TPR	Reduction signals of Fe ³⁺		•
XRD	Lattice expansion, γ Fe,Ni formation		•
FMR	Increase of magnetization, anisotropy		
Mössbauer spectroscopy	Formation of yFe,Ni particles		
H ₂ chemisorption	Decrease of Ni surface area		
H ₂ -TPD	identification of Ni sites		¹⁰⁰ [
IR spectroscopy (CO ₂ probe)	Change of carbonyl bands	%/1	80 -
		ersion	60
		conv	40
Formation of Ni-Fe allov particles, electronic			

Formation of Ni-Fe alloy particles, electronic modification of the active Ni sites

Increase of

NiAl

8 bar

20

Ĭ50

H₂/CO₂/Ar = 4/1/5

150 NL g_{cat}⁻¹h⁻¹

200

250

Temperature / °C

- initial catalytic activity
- apparent thermal stability under CO₂ methanation reaction conditions

before aging

(500 °C, 32 h)

350

after aging

300

100

T. Burger, F. Koschany, O. Thomys, K. Köhler, O. Hinrichsen, Appl. Catal. A 2018, 558, 44–54.

Simultaneous Dopant Effects of Fe and Mn on Co-Precipitated Ni-Al in CO₂ Methanation

- Improved activity and apparent stability compared • to Ni-Al
- Working mechanisms of Fe and Mn similar as in • mono-doped catalysts
- Activity-stability behavior of impregnated catalysts depends on doping order and can be tailored

Activity-stability relationship suggests a mechanism involving active perimeter sites

T. Burger, F. Koschany, A. Wenng, O. Thomys, K. Köhler, O. Hinrichsen, Catal. Sci. Technol. 2018, 8, 5920–5932.

Chair I of Technical Chemistry Department of Chemistry Technical University of Munich

Kinetic Modeling of CO_x Methanation: Reaction Network

T. Burger, P. Donaubauer, O. Hinrichsen, Appl. Catal. B 2021, 282, 119408.

ronaramotrizod

Kinetic Modeling of CO_x Methanation: Kinetic Expressions

- Methanation reaction mechanism may involve decomposition of different COH_y species
- Minimum sum of squared residuals for a discrete value of y = 2
- Kinetic expression for *y* = 2 gives an average on kinetics

Number of parameters:	14
Number of species:	3
Number of responses:	1626

Thermodynamic consistency Strong Boudart criteria Model significance Statistic relevance

	reparametrized	
	value / -	95 % CI /
A _{Met} / mol (g _{cat} s) ⁻¹	9.39E+07	-2.58E+07 +3.55E+07
E _{A,Met} / kJ/mol ⁻¹	130.87	±1.41
A_{ads,CO_2} / mol $(g_{cat} s)^{-1}$	6.23E+02	-4.80E+02 +6.03E+02
$E_{ m A,ads,CO_2}$ / kJ mol ⁻¹	56.94	±0.98
$A_{ads,C0}$ / mol (g _{cat} s) ⁻¹	2.35E+03	-1.29E+02 +1.63E+02
E _{A,ads,CO} / kJ mol ⁻¹	56.47	±0.99
$oldsymbol{\Delta_{ads}}oldsymbol{S_{H_2}}$ / J (mol K) ⁻¹	-67.51	±1.92
$\Delta_{ m ads} H_{ m H_2}$ / kJ mol ⁻¹	-58.38	±1.02
$\Delta_{ m ads} S_{ m CH_4}$ / J (mol K) ⁻¹	-217.02	±9.26
$\Delta_{ m ads} H_{ m CH_4}$ / kJ mol ⁻¹	-156.45	±5.65
$\Delta_{ m ads} S_{ m H_20}$ / J (mol K) ⁻¹	-135.09	±4.75
$\Delta_{ m ads} H_{ m H_20}$ / kJ mol ⁻¹	-89.85	±2.86
$\Delta_{ m ads} S_{ m CO}$ / J (mol K) ⁻¹	-17.56	±1.95
$\Delta_{ m ads} H_{ m CO}$ / kJ mol ⁻¹	-44.68	±0.78

T. Burger, P. Donaubauer, O. Hinrichsen, Appl. Catal. B 2021, 282, 119408.

Kinetic Modeling of CO_x Methanation: Reaction Network

T. Burger, P. Donaubauer, O. Hinrichsen, Appl. Catal. B 2021, 282, 119408.

Kinetic Modeling of CO_x Methanation: Results

T. Burger, P. Donaubauer, O. Hinrichsen, Appl. Catal. B 2021, 282, 119408.

Microkinetic Model of CO_x Methanation

- \rightarrow 13 surface species
- \rightarrow 42 elementary steps (forward and reverse reactions)

Available in Chemkin-Format

 \rightarrow This Format is read by catalyticFOAM

The rate coefficient of each reaction is:

 $k_j = A_j T^{\beta_j} \exp \left(\frac{-E_{\mathrm{a},j}}{RT}\right) \exp \left(\frac{\epsilon_{ij}\theta_{ij}}{RT}\right)$

The production rate of each species is then calculated by:

$$\dot{s}_i = \sum_j \nu_{ji} k_j \prod_i c_i^{\nu_{ji}}$$

Table 2. Detailed, Thermodynamically Consistent Reaction Mechanism for the Methanation of CO and CO₂ over Ni^a

reaction	A_j (cm, mol, s) or S_0 (*)	β_{j}	E_{ij} (kJ mol ⁻¹)	ε_{ij} (kJ mol ⁻¹)
$H_2 + 2(s) \rightarrow 2H(s)$ (R1)	$1.46 \times 10^{-2_{\oplus}}$	0	0	
$2H(s) \rightarrow H_2 + 2(s)$ (R2)	4.54×10^{21}	-0.138	96.1	
$CH_4 + (s) \rightarrow CH_4(s)$ (R3)	1.06×10^{-2}	0	0	
$CH_4(s) \rightarrow CH_4 + (s)$ (R4)	2.79×10^{15}	0.085	37.0	
$H_2O + (s) \rightarrow H_2O(s)$ (R5)	1.16×10^{-1} *	0	0	
$H_2O(s) \rightarrow H_2O + (s)$ (R6)	2.04×10^{11}	-0.031	61.0	
$CO_2 + (s) \rightarrow CO_2(s)$ (R7)	6.29×10^{-5} *	0	0	
$CO_2(s) \rightarrow CO_2 + (s)$ (R8)	4.99×10^{7}	0.018	25.8	
$CO + (s) \rightarrow CO(s)$ (R9)	3.74×10^{-1}	0	0	
$CO(s) \rightarrow CO + (s)$ (R10)	1.14×10^{12}	-0.103	112.0	50.0*
$CO_2(s) + (s) \rightarrow CO(s) + O(s)$ (R11)	1.60×10^{23}	-1.001	89.3	
$CO(s) + O(s) \rightarrow CO_2(s) + (s)$ (R12)	5.81×10^{19}	0	123.6	50.0*
$CO(s) + (s) \rightarrow C(s) + O(s)$ (R13)	2.36×10^{14}	0	116.2	50.0 [†]
$C(s) + O(s) \rightarrow CO(s) + (s)$ (R14)	2.54×10^{18}	0	148.1	105.0 [‡]
$CO(s) + H(s) \rightarrow C(s) + OH(s)$ (R15)	3.05×10^{18}	-0.223	105.3	50.0*
$C(s) + OH(s) \rightarrow CO(s) + H(s)$ (R16)	2.18×10^{18}	0.128	62.8	105.0 [‡]
$CO(s) + H(s) \rightarrow HCO(s) + (s)$ (R17)	6.82×10^{21}	-0.979	132.1	
$HCO(s) + (s) \rightarrow CO(s) + H(s)$ (R18)	2.18×10^{20}	-0.021	0.2	-50.0^{\dagger}
$HCO(s) + (s) \rightarrow CH(s) + O(s)$ (R19)	5.10×10^{18}	0.023	81.7	
$CH(s) + O(s) \rightarrow HCO(s) + (s)$ (R20)	3.42×10^{19}	-0.023	110.2	
$H(s) + C(s) \rightarrow CH(s) + (s)$ (R21)	1.33×10^{34}	-0.456	157.7	105.0 [‡]
$CH(s) + (s) \rightarrow C(s) + H(s)$ (R22)	2.63×10^{22}	0.456	22.3	
$CH(s) + H(s) \rightarrow CH_2(s) + (s)$ (R23)	3.21×10^{25}	-0.084	81.1	
$CH_2(s) + (s) \rightarrow CH(s) + H(s)$ (R24)	6.16×10^{34}	0.084	95.2	
$CH_2(s) + H(s) \rightarrow CH_3(s) + (s)$ (R25)	7.78×10^{22}	-0.048	59.5	
$CH_3(s) + (s) \rightarrow CH_2(s) + H(s)$ (R26)	6.16×10^{34}	0.048	95.9	
$CH_3(s) + H(s) \rightarrow CH_4(s) + (s)$ (R27)	3.63×10^{21}	-0.048	65.7	
$CH_4(s) + (s) \rightarrow CH_3(s) + H(s)$ (R28)	6.16×10^{21}	0.048	53.6	
$H(s) + O(s) \rightarrow OH(s) + (s)$ (R29)	1.16×10^{34}	-0.176	104.2	
$OH(s) + (s) \rightarrow H(s) + O(s)$ (R30)	7.70×10^{19}	0.176	29.8	
$H(s) + OH(s) \rightarrow H_2O(s) + (s)$ (R31)	2.34×10^{30}	0.075	44.1	
$H_2O(s) + (s) \rightarrow OH(s) + H(s)$ (R32)	2.91×10^{21}	-0.075	90.4	
$2OH(s) \rightarrow H_2O(s) + O(s)$ (R33)	1.01×10^{20}	0.251	95.1	
$H_2O(s) + O(s) \rightarrow 2OH(s)$ (R34)	1.89×10^{25}	-0.251	215.8	
$H(s) + CO_2(s) \rightarrow COOH(s) + (s)$ (R35)	1.29×10^{25}	-0.46	117.2	
$COOH(s) + (s) \rightarrow CO_2(s) + H(s)$ (R36)	1.29×10^{20}	0.46	33.8	
$COOH(s) + (s) \rightarrow CO(s) + OH(s)$ (R37)	6.03×10^{23}	-0.216	54.4	
$CO(s) + OH(s) \rightarrow COOH(s) + (s)$ (R38)	1.45×10^{21}	0.216	97.6	50.0*
$COOH(s) + H(s) \rightarrow HCO(s) + OH(s)$ (R39)	4.22×10^{23}	-1.145	104.7	
$HCO(s) + OH(s) \rightarrow COOH(s) + H(s)$ (R40)	3.25×10^{19}	0.245	16.1	
$2CO(s) \rightarrow CO_2(s) + C(s)$ (R41)	6.31×10^{13}	0.5	241.7	100.0*
$C(s) + CO_{s}(s) \rightarrow 2CO(s)$ (P42)	1.88×10^{21}	-0.5	239.3	105.0 [‡]

D. Schmider, L. Maier, O. Deutschmann, Ind. Eng. Chem. Res. 2021, 60, 5792-5805.

Chair I of Technical Chemistry Department of Chemistry Technical University of Munich

D. Schmider, L. Maier, O. Deutschmann, Ind. Eng. Chem. Res. 2021, 60, 5792-5805.

Summary

Catalyst Synthesis and

Structure - Activity Analysis

Kinetic Measurements and Kinetic Modeling

CO_x Methanation

CO₂ Methanation

ТШ

Chair I of Technical Chemistry Department of Chemistry Technical University of Munich

Types of fixed beds

powder bed	random (pellet) bed	structured bed ^[2]	foams ^[1]	structures (POCS) ^[1]
		1.80 mm 1890 m²/m³		
de				
+ direct use of catalyst powder	+ maintanance + catalyst synthesis + shaping	 + radial dispersion + narrow residence time distribution 	+ even flow profile + high specific suface area	+ lowest pressure drop + good heat transport + wall contact
pressure drop	ure drop - pressure drop - broad residence time distribution (turbulences)	sure drop d residence distribution ulences) - wall contact (channeling and hea - sensitive to roundness of tube - adhesion of catalyst	ling and heat transport) as of tube	 low residence time adhesion of catalyst

[1] A. Inayat et al. Chem. Eng. Sci. 2011, 66, 2758.

[2] A. Gascon et al. Catal. Sci. Technol. 2015, 5, 807.

wariadia awaw aallular

Chair I of Technical Chemistry Department of Chemistry Technical University of Munich

Pellet Beds - Shapes of the State of the Art?

J. von Seckendorff, PhD Thesis, Technical University of Munich, 2021.
P. Donaubauer, O. Hinrichsen, *IEC Research* 2019, *58*, 110-119.
J. von Seckendorff, P. Scheck, M. Tonigold, R. Fischer, O. Hinrichsen *Chem. Eng. J.* 2021, *404*, 126468. 24

Classification of AM processes for ceramics

Based on DIN 8580 and Formnext AM Field Guide Compact (2019)

For **all** processes: 3D structures are created by a selective layer-by-layer process

Binder Jetting (BJ) Fabrication Steps

Preliminary Results for CO₂ Methanation over BJ printed catalysts

[1] J. Fernengel, L. Bolton, O. Hinrichsen, CET 2020, 43, 172–178.[2] confidential results

Ph.D. Students involved

David Schlereth (BASF SE) Franz Koschany (MAN) Chris Schüler (Clariant) Stefan Ewald (Freudenberg) Philipp Donaubauer (WACKER) Johanna Fernengel (Clariant) Moritz Wolf (EPA) Thomas Burger (Freudenberg)

Tabea Gros Hanh My Bui Heike Plendl Christian Bauer

Bundesministerium für Bildung und Forschung

Munich Catalysis · MuniCat Alliance of Clariant and TUM

Thank you very much for your attention! —

Stay healthy!