LSRE-LCM Shaking the Present Shaping the Future

Cyclic Adsorption/Reaction Processes in CO2 Capture and Utilisation

Alírio E. Rodrigues Emeritus Professor, University of Porto

Webinar POWER2METHANE

June 5, 2020

ASSOCIATE LABORATORY LABORATORY OF SEPARATION AND REACTION ENGINEERING LABORATORY OF CATALYSIS AND MATERIALS

Outline

• The old days

Searching "high-temperature" adsorbents for CO2 capture in steam methane reforming for H2 production

CO2 capture pilot plant in Shangai - cooperation with ECUST(China) & UFSC(Brazil)

- PSA for CO2 capture from coal or biomass gasification and produce H2/CO mixture for MeOH synthesis or Fischer Tropsch
- Cryogenic adsorption CO2/CH4 separation (PTSA)
- Electric Swing Adsorption (ESA) for CO2 capture: shaping and 3D printing of composite monoliths
- Power-to-Gas project: SERP process with CO2 capture and methanation to produce SNG

Cyclic Adsorption/Reaction Processes

The old days

Methane steam reforming for H2 production (112,000 Nm3/h) 25-40 bar; 1100 K

$CH_4 + H_2O \leftrightarrow CO + 3H_2$	∆H = 205.8 kJ/mol	SMR
$CO + H_2O \leftrightarrow CO_2 + H_2$	∆H = -41.2 kJ/mol	Water gas shift
$CH_4 + 2H_2O \leftrightarrow CO_2 + 4H_2$	∆H = 164.6 kJ/mol	Global SMR

7

CO2 capture with high temperature adsorbents for Sorption Enhanced Reaction Processes (SERP)

 $M_{1-x}^{2+}M_{x}^{3+}(OH^{-})_{2}(A^{n-})_{x/n} \cdot mH_{2}O$ $0.2 \le x \le 0.33$

SERP

U. PORTO FEUP FACULDADE DE ENCENHARIA UNIVERSIDADE DO PORTO

4

Materials & Sorption Enhanced Reaction Processes (SERP)

- Zou Yong , Vera Mata and <u>A.E.Rodrigues</u>, "Adsorption of carbon dioxide on basic alumina at high temperatures", *J. Chem and Engineering Data* 45 (6) 1093-1095(2000)
- Zou Yong, Vera Mata and <u>A.E.Rodrigues</u>, "Adsorption of carbon dioxide onto hydrotalcite-like compounds (HTlcs) at high temperatures", *Ind Eng Chem Res* **40**, 204-209 (2001)
- Zou Yong, Vera Mata and <u>A.E.Rodrigues</u>, "Adsorption of carbon dioxide on chemically modified high surface area carbon-based adsorbents at high temperatures", *Adsorption* **7**(1) 41-50 (2001).
- Zou Yong and A.E. Rodrigues, "Adsorbent materials for carbon dioxide", Adsorption Science and Technology, **19** (3) 255-266 (2001)
- Zou Yong, Vera Mata and <u>A.E. Rodrigues</u>, "Adsorption of carbon dioxide at high temperature: a review", *Sep. Pur. Tech*, **26** (2/3) 195-205 (2002)
- G.H. Xiu, P.Li and <u>A.E.Rodrigues</u>, "Sorption enhanced reaction process with reactive regeneration" *Chem Eng Sci* **57**, 3893-3908 (2002)
- G.H.Xiu, J.L.Soares, P.Li and <u>A.E.Rodrigues</u>, "Simulation of a five-step one-bed sorption-enhanced reaction process", *AIChEJ* 48 (12) 2817-2832 (2002)
- Guo hua Xiu, Ping Li and <u>A.E. Rodrigues</u>, "New generalized strategy for improving sorption-enhanced reaction process", *Chem Eng Sci* 58, 3425-3437 (2003)
- Guo hua Xiu, Ping Li and <u>A.E. Rodrigues</u>, "Adsorption-enhanced steam-methane reforming with intraparticle limitations", *Chem Eng J* **95**(1-3), 83-93 (2003)
- G.Xiu, P. Li and <u>A.E.Rodrigues</u>, "Subsection controlling strategy for improving sorption-enhanced reaction processes", *Chem Eng Res Dev*, 82(A2) 192-202 (2004)
- Yi-Ning Wang and <u>A.E. Rodrigues</u>, "Hydrogen Production from Steam Methane Reforming coupled with in-situ CO2 capture: conceptual parametric study", *Fuel*, 84, 1778-1789 (2005)

PhD thesis of Zhen Liu (ECUST)

SRE CM LABORATORY OF SEPARATION AND REACTION ENGINEERING LABORATORY OF CATALYSIS AND MATERIALS

CO2 capture pilot plant VPSA) designed by Zhen Liu

SRE CM LABORATORY OF SEPARATION AND REACTION ENGINEERING LABORATORY OF CATALYSIS AND MATERIALS

2-bed 6-step	Silica gel	15.0	99.6	99.6	1.81	1.94	Li et al. 2016
2-bed 4-step	13X	15.0	94.8±1	89.7±5.6	1.98±0.099	1.22–2.10±0.132	Krishnamurthy et at. 2014
3-bed 5-step 4-bed 7-step	5A-5A	15.0	96.05	91.05	0.33	0.646	Liu et al. 2011
3-bed 5-step/ 2-bed 6-step	13XAPG - 13XAPG	15.0	96.54	93.35	0.53	0.710	Wang et al. 2012
3-bed 8-step/ 2-bed 6-step	13XAPG - 13XAPG	16.0	95.6	90.2	0.74	2.44	Wang et al. 2013
2-bed 6-step/ 2-bed 5-step	13X- MgMOF74	15.0	97.57	90.2	3.09	0.700	Nikolaidis et al. 2017
1-bed 4-step/ 1-bed 4-step	CMS- CMS	15.0	90	89.9	-	0.990	Haghpanah et al. 2014

Cooperation with ECUST and UFSC on CO2 capture

- Liu, Z., C. Grande, Li Ping, Yu Jianguo, A-E.Rodrigues, "Multi-bed Vacuum Pressure Swing Adsorption for CO2 capture from flue gas", Sep Pur Tech, 81(3) 307-317 (2011)
- Z. Liu, Lu Wang, X. Kong, Ping Li, Jianguo Yu and <u>A.E. Rodrigues</u>, On site CO2 capture from flue gas by adsorption process in coal-fired power plant", *Ind Eng Chem Res* **51**, *7355-7363* (2012)
- Lu Wang, Z. Liu, X. Kong, Ping Li, Jianguo Yu and <u>A.E. Rodrigues</u>, Experimental and modeling investigation on post-combustion CO2 capture in zeolite 13 APG by hybrid VTSA process", *Chem Eng J* 197, 151-161 (2012)
- Lu Wang; Ying Yang; W. Shen; X. Kong; Ping Li; Yu Jianguo; <u>A. E. Rodrigues</u>, "CO2 capture from flue gas in an existing coal-fired power plant by pilot-scale two successive VPSA units", *Ind Eng Chem Res* 52 (23) 7947-7955 (2013)
- Lu Wang, Ying Yang, W. Shen, X. Kong, Ping Li, Jianguo, Yu and <u>A.E.</u> <u>Rodrigues</u>, "Experimental Evaluation of Adsorption Technology for CO2 Capture from Flue Gas in an Existing Coal-fired Power Plant", *Chem Eng Sci* **101**, 615-619 (2013)
- J.L. Soares, R. Moreira, H.J. José, C. Grande and <u>A.E. Rodrigues</u>, "Hydrotalcite materials for carbon dioxide adsorption at high temperature: characterization and diffusivity measurements", *Separation Science* and Technology **39** (9), 1989-2010 (2004)
- J.L.Soares, G. Casarin, H.J. José, R.Moreira and <u>A.E. Rodrigues</u> "Experimental and theoretical analysis for the CO2 adsorption on hydrotalcite", *Adsorption* 11:237-241 (2005)
- R. Moreira, J. Soares, G. Casarin and <u>A. E. Rodrigues</u>, "Adsorption of CO2 on Hydrotalcite-like Compounds in a Fixed Bed", *Sep Sci Tech*, **41** (2), 341-357 (2006)

PSA for CO2 capture from coal or biomass gasification and to produce H2/CO mixture for MeOH synthesis or Fischer Tropsch

Coal to MeOH

SRE CM LABORATORY OF SEPARATION AND REACTION ENGINEERING LABORATORY OF CATALYSIS AND MATERIALS

U. PORTO

11

Cryogenic adsorption for CO2/CH4 separation (PTSA)

ASSOCIATE LABORATORY LABORATORY OF SEPARATION AND REACTION ENGINEERING LABORATORY OF CATALYSIS AND MATERIALS

Binderless 13X zeolite – adsorption equilibrium isotherms

SRE CM LABORATORY CATALYSIS AND MATERIALS U. PORTO FEUP FACULDADE DE ENGENHARIA

The mathematical model described previously involves a system of partial differential and algebraic equations (PDAEs), which can be solved using modelling software. The modelling software chosen was gPROMS[®] ModelBuilder (PSE) [82], which is a reliable simulation tool. gPROMS[®] provides a general interface that can incorporate other external property and thermodynamic tools. In this way, REFPROP was integrated in the gPROMS[®] simulation tool by the use of REFPROP CAPE-OPEN (Computer Aided Process Engineering) physical properties socket [83].

13

PTSA cycle and process performance

Recovery of CH4 = 90.7% Product stream with 41.8 ppm in CH4 CH4 productivity 100.1 mol/Kg ads/h Power consumption 2.2 MW (compared with 22.3 MW in cryogenic distillation)

SRE ASSOCIATE LABORATORY CM LABORATORY OF SEPARATION AND REACTION ENGINEERING LABORATORY OF CATALYSIS AND MATERIALS FEUP FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO

ELECTRICAL CONDUCTIVE 3D-PRINTED MONOLITH ADSORBENT FOR CO_2 CAPTURE

Additive manufacturing - 3D

Direct Ink Writing method

Print structures with solid free-form fabrication from an ink with high viscosity; Printing occurs with a pressure delivery of an ink through one or multiple capillaries or syringes

Farahani, R. D., Chizari, K., and Therriault, D. Three-dimensional printing of freeform helical microstructures: a review. Nanoscale 2014, 6, 10470-10485.

3D-PRINTING IN GAS SEPARATION

Recently, additive manufacturing gained worldwide attention in the development of adsorbents for **gas separation processes** applications

Advantages:

· controlled properties: shape and size, wall thickness, density

Can be used as alternative or a complement to the extrusion process

3D-PRINTING: MONOLITH DESIGN

Monolith design - Why?

- High mechanical stability
- High resistance toward abrasion/attrition
- Higher surface area to volume ratio
- Homogeneous power distribution
- Lower pressure drop

Monolith properties – Which?

- High CO₂ adsorption capacity
- High electric conductivity

Design of STL file: SolidWorks 2017[®] G-code generation file: Ultimaker Cura 3.1.0

U. PORTO FEUP FACULDADE DE ENGENHARIA

3D-PRINTING: INK PREPARATION

3D-PRINTING: MONOLITH PRINTING

From Design (.STL) to...

...construction (3D)!

SRE ASSOCIATE LABORATORY LABORATORY OF SEPARATION AND REACTION ENGINEERING LABORATORY OF CATALYSIS AND MATERIALS

U. PORTO

Workshop "Industrial Decarbonisation: Integration of Materials and Processes for CO2 Capture", Edinburgh June 25, 2019

19

3D-PRINTED MONOLITH

Final monolith material: 30 × 30 × 43 mm 70% zeolite 13X and 30% AC

SRE ASSOCIATE LABORATORY LABORATORY OF SEPARATION AND REACTION ENGINEERING LABORATORY OF CATALYSIS AND MATERIALS

FEUP FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO

TEXTURAL CHARACTERIZATION

TEXTURAL CHARACTERIZATION

U. PORTO

HEATING TESTS AND MECHANICAL STRENGTH

Constant voltage

applied (V)

Heating tests with electric current

• Piece of 10×10×4 mm

Exp

Material

Delivered power

(W) a

3.25

41.4

.

Current

measured (A)

Adsorption equilibrium isotherms

U. PORTO FEUP FACULDADE DE ENGENHARIA

POWER2METHANE (NATIONAL PROJECT)

Duration: 2018-2020 | Granted funding: 239 k€

LM Madeira AER Pl C. Miguel M. Soria Junior posdocl res Catarina Joana Faria Martins

POWER2METHANE PROJECT

PROBLEM

CO₂ EMISSIONS^[1]

CO₂ CONCENTRATION ^[2]

CLIMATE CHANGE ^[3]

[1] – International Energy Agency (**2017**), " CO_2 emissions from fuel combustion 2017 : highlights.

SRE ASSOCIATE LABORATORY CM LABORATORY OF SEPARATION AND REACTION ENGINEERING LABORATORY OF CATALYSIS AND MATERIALS U. PORTO FEUP FACULDADE DE ENGENHARIA [2] – European Environment Agency (2018): https://www.eea.europa.eu **[3]** – R.K. Pachauri **(2012)**, The latest essential scientific findings that feed the assessment of the Intergovernmental Panel on Climate Change, CO₂ Forum, Lyon 2012.

APPROACH: TURN WASTE (CO₂) TO VALUE (CH₄)

ADSORPTIVE REACTOR

CO₂ CAPTURE

Diluted CO₂ from flue gas is separated from other species and its concentration inside the reactor is increased

CO₂ CONVERSION

H₂ is fed to the reactor and CO₂ is purged from the adsorbent while becoming available to react in the catalyst layers to produce methane (and water) - reactive regeneration

27

$$CO_2 + 4H_2 \rightleftharpoons CH_4 + 2H_2O \quad \Delta H_{298 K} = -165 \text{ kJ} \cdot \text{mol}^{-1}$$

 CO_2 + other flue gas species

CCU Technology for Power-to-Gas Applications

CCU TECHNOLOGY FOR POWER-TO-GAS APPLICATONS

FFUP FACULDADE DE ENGENHARIA

R&D ROADMAP

OPTIMIZATION

FEUP FACULDADE DE ENGENHARIA

COLLABORATIVE WORK

OUTCOMES AND CHALLENGES

- \checkmark Proof-of-concept of the adsorptive reactor for CO₂ capture and conversion application
- \checkmark Captured CO₂ could be almost completely converted to methane (90 %)
- ✓ Good compatibility and cyclic stability of tested adsorbent and catalyst

	CO ₂ adsorption capacity (mol/kg _{ads})	CO ₂ conversion (%)	CH ₄ productivity (mol/(kg _{cat} h)	CH ₄ purity (%)
Baseline* (2018)	0.3	90	2.4	36
Target* (2019-2020)	1.0	100	3.0	84

PERFORMANCE INDICATORS @ T=350 C, $P_t=1$ bar and $y_{CO2}=0.15$

* Carlos V. Miguel, CO₂ capture and conversion to chemicals: methane production, PhD thesis, University of Porto, 2018.

** Within the scope of FCT project POWER2METHANE (<u>www.power2methane.fe.up.pt</u>)

ASSOCIATE LABORATORY LABORATORY OF SEPARATION AND REACTION ENGINEERING LABORATORY OF CATALYSIS AND MATERIALS	EUP FACULDADE DE ENCENHARIA UNIVERSIDADE DO PORTO	Workshop "Industrial Decarbonisation: Integration of Materials and Processes for CO2 Capture", Edinburgh June 25, 2019
--	--	--

		ТАЅК	GOALS			
	ADSORBENTS	Synthesis, characterization and screening ofNa-, Cs- and K-promotedhydrotalcites for CO_2 adsorption at high temperature.	 Improve CO₂ adsorption capacity Improve adsorption/desorption kinetics 			
MATERIALS	CATALYSTS	Synthesis, characterization and screening of catalysts for CO_2 methanation: Ru, Ni, Ru-Ni and Ni catalysts featuring CO_2 adsorption capacity (i.e. dual-function materials).	 Improve CH₄ productivity Improve CH₄ purity 			
PROCESS	REACTOR	Modeling of the cyclic adsorptive reactor unit in gPROMS	 Optimization of the reactor performance Estimation of CAPEX and OPEX			
_			32			
SRE ASSOCIATE LABORATORY LABORATORY OF SEPARATION AND REACTION ENGINEERING LABORATORY OF CALVASIS AND MATERIALS LABORATORY OF SEPARATION AND MATERIALS						

PROTOTYPE FOR CYCLIC OPERATION

Innovation

INNOVATION	LURGI	TREMP (Haldor Topsoe)	VESTAS (Foster Wheeler/ Clariant)	COMFLUX (PSI)	ETOGAS/ ZSW	Agnion	EBI	EBI	FEUP
Type of reactor	Series o intermitt	of adiabatic fixe ent and recircu	ed beds with Ilation cooling	Isothermal b u b b l i n g fl u i d i z e d bed reactor	Polytropic fixed bed with several injection points and cooling zones	Polytropic fixed bed w i t h p a r ti a l cooling	Polytropic fixed bed w i t h conductive catalyst support	Isothermal bubble column reactor	Adsorptive Reactor (cyclic process)
Simplicity	+	+	+			0	0		ο
Low nr. of units				+	+	++	+	0	+
High temperature of cooling	+	++	+		ο	0			
Flexibility	0	0	0	++	+	0	+	++	+
Sufficient mass transfer	+	+	+	+	+	+	+		+
Good heat transfer	n.a.	n.a.	n.a.	++	0	0	+	++	++
Low challenges for catalyst	0	-	0		0		0	+	0
TRL	9	9	7-8	7,8	8	5	4	4	3

++ very much given; + given; o less given; - not given; -- not given at all; n.a. not applicable

SRE CM LABORATORY OF SEPARATION AND REACTION ENGINEERING LABORATORY OF CATALYSIS AND MATERIALS U. PORTO FEUP FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO

High temperature CO₂ capture by adsorption

Materials for CO₂ adsorption

SRE ASSOCIATE LABORATORY LABORATORY OF SEPARATION AND REACTION ENGINEERING LABORATORY OF CATALYSIS AND MATERIALS

FEUP FACULDADE DE ENGENHARIA

CO₂ capture by adsorption

Hydrotalcites

Synthesized hydrotalcites

Reference	M ²⁺	M ³⁺		A ⁿ⁻	Promote	Content (wt.%)
					r	
HTC	Mg	Al	-	CO32-	-	-
HTC-20K	Mg	AI	-	CO ₃ ²⁻	K	20
HTC-10Ga	Mg	Al	Ga	CO32-	-	-
HTC-10Ga-20K	Mg	Al	Ga	CO32-	K	20
HTC-10Ga-20C	Ma	Δι	Ga	CO 2-	Ce	20
S	ivig		Ga	UU_3	03	20
HTC-10Ga-20Sr	Mg	Al	Ga	CO32-	Sr	20

SRE ASSOCIATE LABORATORY CM LABORATORY OF SEPARATION AND REACTION ENGINEERING LABORATORY OF CATALYSIS AND MATERIALS

U. PORTO FEUP FACULDADE DE ENGENHARIA

Workshop "Industrial Decarbonisation: Integration of Materials and Processes for CO2 Capture", Edinburgh June 25, 2019

$\begin{bmatrix} \mathsf{M}_{1-x}^{2+} & \mathsf{M}_{x}^{3+} \left(\mathsf{OH}\right)_{2} \end{bmatrix} \begin{bmatrix} \mathsf{A}^{n-} \end{bmatrix}_{x/n} \cdot y \ \mathsf{H}_{2}\mathsf{O}$

M²⁺: Mg²⁺, Ni²⁺, Zn²⁺ ... M³⁺: Al³⁺, Ga³⁺, Mn³⁺ ... Aⁿ⁻: CO₃²⁻, Cl⁻, SO₄²⁻ ...

Synthesis protocol

1. Hydrotalcites were prepared by the <u>co-precipitation metho</u>

- M²⁺/M³⁺ = 2:1 (mol. %)
- AI : Ga = 90 : 10 (mol. %)

2. Modification with K, Cs or Sr performed by wet impregnation

3. Calcination at 400 °C during 2 hours

CO₂ capture by adsorption

CO₂ sorption equilibrium at 300 °C Sorbent screening

Material	т [К]	p _{co2} [bar]	q [mol·kg ⁻¹]	Ref.
HTC-10Ga-20K	573	1.08	1.82	This work
cK-HTCGa MW	573	1.05	1.70	Chem. Eng. J., 325 (2017) 25.
cK-HTC MW	573	1.05	1.35	Chem. Eng. J., 325 (2017) 25.
K-promoted hydrotalcite	673	1	0.79	J. Colloid Interf. Sci., 308 (2007) 30.
Hydrotalcite	573	1	0.52	Sep. Purif. Technol. 26 (2002) 195.
Hydrotalcite	573	1	0.50	Ind. Eng. Chem. Res. 40 (2001) 204.
Hydrotalcite	573	1.1	0.25	Ind. Eng. Chem. Res. 45 (2006) 7504.

SRE CM LABORATORY OF SEPARATION AND REACTION ENGINEERING LABORATORY OF CATALYSIS AND MATERIALS

Post-combustion

U. PORTO FEUP FACULDADE DE ENGENHARIA

CO₂ capture by adsorption

Determination of the working capacity

FEUP FACULDADE DE ENGENHARIA

Sorptive reactor unit description

Sorption-desorption cycles

Sorption-desorption cycles

Sorbent working capacity

Sorption-reaction cycles

Normal regeneration (N₂)

2000

43

0.18 1.40 a) Cycle 5 0.16 1.35 0.14 Effect of steam 1.30 0.12 Pout / bar 0.10 1.25 Yc 0.08 350 °C — 300 °C → -1.20 0.06 25 100 0.04 desorbed/unconverted n_{co,} 1.15 0.02 sorbed 20 90 *4* n_{co,} 1.10 0.00 nsorbed, desorbed / mmol X_{co.} 500 1000 1500 2000 0 . t_p/s 15 80 % Reactive regeneration (H_2) Xco 1.40 0.18 - 0.8 b) Cycle 6 70 10 0.16 1.35 0.14 0.6 0.12 1.30 60 5 Pout / bar 0.10 Yco, 0.4 H 1.25 0.08 0 1.20 0.06 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0.2 0.04 cycle 1.15 0.02 - 0.0 1.10 0.00 1000 1500 2000 $CO_2 + 4H_2 \rightleftharpoons CH_4 + 2H_2O \quad \Delta H_{298 \text{ K}} = -165 \text{ kJ} \cdot \text{mol}^{-1}$ 0 500 t_R/s SRE U. PORTO SRE ASSOCIATE LABORATORY LABORATORY OF SEPARATION AND REACTION ENGINEERING LABORATORY OF CATALYSIS AND MATERIALS FFUP FACULDADE DE ENGENHARIA

Sorption-reaction cycles

Sorption-reaction cycles

CO formation

Highlights

- **1** The concept of integrating CO_2 capture and its conversion into CH_4 in the same unit is successfully proved
- **2** The conversion of captured CO_2 was high ($X_{CO2} \sim 90$ %)
- **3** Reactive regeneration improves sorbent capacity and desorption kinetics
- **L** CO formation can be minimized by decreasing the temperature and/or increasing the pressure
- **5** The commercial materials used were compatible and stable under cyclic operation

- E. Oliveira, C. Grande and <u>A.E. Rodrigues</u>, "CO2 Sorption on hydrotalcite and alkali modified (K and Cs) hydrotalcites at high temperatures", *Sep PurTech* 62, 137-147 (2008)
- C.A. Grande, R.Ribeiro, E. Oliveira and <u>A.E. Rodrigues</u>, "Electric swing adsorption as emerging CO2 capture technique, Greenhouse Gas Control Technologies 9, eds J Gale, H Herzog and J. Braitsch, *Energis Procedia*, **1**(1) 1219-1225 (2009)
- E. Oliveira, C. Grande and <u>A.E. Rodrigues</u>, "Steam Methane Reforming in a Ni/Al2O3 catalyst: kinetics and diffusional limitations in extrudates", *The Canadian Journal of Chemical Engineering* **87**, 945-956 (2009)
- C. A. Grande, R. P. P. L. Ribeiro and <u>A. E. Rodrigues</u>, "Challenges of Electric Swing Adsorption for CO2 capture", *ChemSusChem* **3** (8) 892-898(2010)
- A.M. Ribeiro, J.C. Santos and <u>A.E. Rodrigues</u>, "Pressure swing adsorption for CO2 capture in Fischer-Tropsch fuels production from biomass", *Adsorption* 17 (3), 443-452 (2011)
- E. L. G. Oliveira; Carlos A Grande, <u>A. E Rodrigues</u>, "Effect of catalyst activity in SMR-SERP for hydrogen production: commercial vs large-pore catalyst", *Chem Eng Sci*, **66**, 342-354 (2011)
- N. Chanburanasiri, A.M. Ribeiro, <u>A. E. Rodrigues</u>, A. Arpornwichanop, N. Laosiripojan^{f,} P.Praserthdam, Suttichai Assabumrungrat, "Development of multifunctional Ni/CaO catalyst for hydrogen production via sorption enhanced steam methane reforming process", Ind Eng Chem Res 50 (29) 13662-13671 (2011)
- A.M. Ribeiro, J.C. Santos, <u>A.E. Rodrigues</u> and S. Rifflart, "Syngas stoiichiometric adjustment for methanol production and cocapture of carbon dioxide by pressure swing adsorption", *Separation Science and Technology* **47** (6) 850-866 (2012)
- A.M. Ribeiro, J.C. Santos, <u>A.E. Rodrigues</u> and S. Rifflart, "Pressure swing adsorption process in coal to Fischer-Tropsch fuels with CO2 capture", *Energy & Fuels* 26, 1246-1253 (2012)
- N. Chanburanasiri, A. Ribeiro, <u>A.E.Rodrigues</u>, N. Laosiripojana, S. Assabumrungrat, "Simulation of methane steam reforming enhanced by in situ CO2 sorption utilizing K2CO3 promoted hydrotalcites for H2 production", *Energy & Fuels* 27(8) 4457-4470 (2013)

.

- Y.J. Wu, Ping Li, J.G. Yu, A. F. Cunha and <u>A. E. Rodrigues</u>, "Sorption enhanced steam reforming of ethanol on NiMgAlmultifunctional materials: experimental and numerical investigation", *Chem Eng J* **231**, 36-48 (2013)
- C.V. Miguel, R. Trujillano, V. Rives, M.A. Vicente, A. F. P. Ferreira, <u>A.E. Rodrigues</u>, A. Mendes, L.M. Madeira[,], "High Temperature CO2 Sorption with Gallium-substituted and promoted Hydrotalcites", *Sep Pur Tech* **127**, 202-211 (2014)
- Yi-J Wu, Ping Li, Jian-Guo Yu, A. F. Cunha and <u>A. E. Rodrigues</u>, "Sorption-enhanced Steam Reforming of Ethanol for Continuous High-Purity Hydrogen Production: 2D Adsorptive Reactor Dynamics and Process Design", *Chem Eng Sci* 118, 83-93 (2014)
- Y.J. Wu, Ping Li, J.G. Yu, A.F. Cunha and <u>A.E. Rodrigues</u>,"Progress on Sorption-Enhanced Reaction Process for Hydrogen Production: A Review", *Reviews in Chemical Engineering* **32(**3) 271-304(2016)
- M.J. Regufe, A. Ferreira J. M. Loureiro, <u>A.E. Rodrigues</u> and A. M. Ribeiro, "Electrical conductive 3D-printed monolith adsorbent for CO2 capture", *Microporous and Mesoporous Materials*, **278**, 403-413 (2019)

Patent

 A.M.Ribeiro, J. C. Santos, <u>A.E. Rodrigues</u>, S. Rifflart, "Low energy cyclic PSA process", Patent Application for TOTAL SA, EP 11305596.6-2113, May 18 (2011), published 19.06.12

Book

• Sorption Enhanced Reaction Processes, World Scientific Publishing (2017), (with Yijiang Wu, Rui Faria and L. M. Madeira)

Porto and FEUP

SRE CM LABORATORY OF SEPARATION AND REACTION ENGINEERING LABORATORY OF CATALYSIS AND MATERIALS

EUP FACULDADE DE ENCENHARIA UNIVERSIDADE DO PORTO